This paper deals with the power allocation problem for coded multicarrier transmission. Specifically, we focus on a bit interleaved coded modulation (BICM) packet transmission implemented with Orthogonal Frequency Division Multiplexing (OFDM) and in the presence of automatic repeat request (ARQ) protocol. Capitalizing on the binary-input output-symmetric (BIOS) nature of the BICM channel it is provided a simple upper-bound of the rate of information bits received without any error, the so called goodput. Based on this theoretical characterization, we develop a power allocation strategy among the different subcarriers so that the system goodput performance metric is maximized. The effectiveness of the proposed method is numerically testified for BICM-OFDM transmission in the context of the typical WLAN scenario.
Power Allocation for Goodput Optimization in BICM-OFDM systems
GIANNETTI, FILIPPOCo-primo
Writing – Review & Editing
;LOTTICI, VINCENZOCo-primo
Writing – Review & Editing
;D'ANDREA, NUNZIO ALDOCo-primo
Writing – Review & Editing
2008-01-01
Abstract
This paper deals with the power allocation problem for coded multicarrier transmission. Specifically, we focus on a bit interleaved coded modulation (BICM) packet transmission implemented with Orthogonal Frequency Division Multiplexing (OFDM) and in the presence of automatic repeat request (ARQ) protocol. Capitalizing on the binary-input output-symmetric (BIOS) nature of the BICM channel it is provided a simple upper-bound of the rate of information bits received without any error, the so called goodput. Based on this theoretical characterization, we develop a power allocation strategy among the different subcarriers so that the system goodput performance metric is maximized. The effectiveness of the proposed method is numerically testified for BICM-OFDM transmission in the context of the typical WLAN scenario.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.