We describe our experiments using the DeSR parser in the multilingual and do- main adaptation tracks of the CoNLL 2007 shared task. DeSR implements an incre- mental deterministic Shift/Reduce parsing algorithm, using specific rules to handle non-projective dependencies. For the multi- lingual track we adopted a second order averaged perceptron and performed feature selection to tune a feature model for each language. For the domain adaptation track we applied a tree revision method which learns how to correct the mistakes made by the base parser on the adaptation domain.
Titolo: | Multilingual Dependency Parsing and Domain Adaptation using DeSR |
Autori interni: | |
Anno del prodotto: | 2007 |
Abstract: | We describe our experiments using the DeSR parser in the multilingual and do- main adaptation tracks of the CoNLL 2007 shared task. DeSR implements an incre- mental deterministic Shift/Reduce parsing algorithm, using specific rules to handle non-projective dependencies. For the multi- lingual track we adopted a second order averaged perceptron and performed feature selection to tune a feature model for each language. For the domain adaptation track we applied a tree revision method which learns how to correct the mistakes made by the base parser on the adaptation domain. |
Handle: | http://hdl.handle.net/11568/187775 |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.