With the support of the legally-grounded methodology of situation testing, we tackle the problems of discrimination discovery and prevention from a dataset of historical decisions by adopting a variant of k-NN classification. A tuple is labeled as discriminated if we can observe a significant difference of treatment among its neighbors belonging to a protected-by-law group and its neighbors not belonging to it. Discrimination discovery boils down to extracting a classification model from the labeled tuples. Discrimination prevention is tackled by changing the decision value for tuples labeled as discriminated before training a classifier. The approach of this paper overcomes legal weaknesses and technical limitations of existing proposals.
k-NN as an Implementation of Situation Testing for Discrimination Discovery and Prevention
RUGGIERI, SALVATORE;TURINI, FRANCO
2011-01-01
Abstract
With the support of the legally-grounded methodology of situation testing, we tackle the problems of discrimination discovery and prevention from a dataset of historical decisions by adopting a variant of k-NN classification. A tuple is labeled as discriminated if we can observe a significant difference of treatment among its neighbors belonging to a protected-by-law group and its neighbors not belonging to it. Discrimination discovery boils down to extracting a classification model from the labeled tuples. Discrimination prevention is tackled by changing the decision value for tuples labeled as discriminated before training a classifier. The approach of this paper overcomes legal weaknesses and technical limitations of existing proposals.File | Dimensione | Formato | |
---|---|---|---|
kdd2011.pdf
non disponibili
Tipologia:
Documento in Post-print
Licenza:
Importato da Ugov Ricerca - Accesso privato/ristretto
Dimensione
747.85 kB
Formato
Adobe PDF
|
747.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.