DeSR is a statistical transition-based dependency parser which learns from annotated corpora which actions to perform for building parse trees while scanning a sentence. We describe recent improvements to the parser, in particular stacked parsing, exploiting a beam search strategy and using a Multilayer Perceptron classifier. For the Evalita 2009 Dependency Parsing task DesR was configured to use a combination of stacked parsers. The stacked combination achieved the best accuracy scores in both the main and pilot subtasks. The contribution to the result of various choices is analyzed, in particular for taking advantage of the peculiar features of the TUT Treebank. Keywords: parser, dependency parsing, perceptron, classifier, natural language.

Accurate Dependency Parsing with a Stacked Multilayer Perceptron

ATTARDI, GIUSEPPE;SIMI, MARIA;
2009

Abstract

DeSR is a statistical transition-based dependency parser which learns from annotated corpora which actions to perform for building parse trees while scanning a sentence. We describe recent improvements to the parser, in particular stacked parsing, exploiting a beam search strategy and using a Multilayer Perceptron classifier. For the Evalita 2009 Dependency Parsing task DesR was configured to use a combination of stacked parsers. The stacked combination achieved the best accuracy scores in both the main and pilot subtasks. The contribution to the result of various choices is analyzed, in particular for taking advantage of the peculiar features of the TUT Treebank. Keywords: parser, dependency parsing, perceptron, classifier, natural language.
9788890358111
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/200727
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact