We introduce a family of Linear Multistep Methods used as Boundary Value Methods for the numerical solution of initial value problems for second order ordinary differential equations of special type. The aim is to obtain P-stable methods with arbitrary order of accuracy. This result allows to overcome the order barrier established by Lambert and Watson which limited to p - 2 the maximum order of a P-stable Linear Multistep Method. In addition, an extension of the methods in the Exponential Fitting framework is also considered.

P-stable boundary value methods for second order IVPs

ACETO, LIDIA;GHELARDONI, PAOLO;MAGHERINI, CECILIA
2012-01-01

Abstract

We introduce a family of Linear Multistep Methods used as Boundary Value Methods for the numerical solution of initial value problems for second order ordinary differential equations of special type. The aim is to obtain P-stable methods with arbitrary order of accuracy. This result allows to overcome the order barrier established by Lambert and Watson which limited to p - 2 the maximum order of a P-stable Linear Multistep Method. In addition, an extension of the methods in the Exponential Fitting framework is also considered.
2012
9780735410916
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/202109
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact