This paper focuses on the detection of targets placed in close proximity by means of local covariance-based anomaly detectors. Specifically, RX algorithm is considered as a case-study in order to show how covariance corruption due to target signal contamination within local background pixels can be mitigated by means of robust sample covariance matrix estimators. Contrary to previous works, where the heavy computational complexity of robust covariance estimator has prevented its local application or required a too high computational demand, here robust covariance estimation is selectively applied only on those image pixels most susceptible to covariance corruption. This is achieved by performing a quick local test at each pixel based on the sample kurtosis. Real data are employed to give experimental evidence of the performance provided by the proposed AD strategy in terms of both detection and computational efficiency.

A Kurtosis-Based Test To Efficiently Detect Targets Placed In Close Proximity By Means Of Local Covariance-Based Hyperspectral Anomaly Detectors

MATTEOLI, STEFANIA;DIANI, MARCO;CORSINI, GIOVANNI
2011-01-01

Abstract

This paper focuses on the detection of targets placed in close proximity by means of local covariance-based anomaly detectors. Specifically, RX algorithm is considered as a case-study in order to show how covariance corruption due to target signal contamination within local background pixels can be mitigated by means of robust sample covariance matrix estimators. Contrary to previous works, where the heavy computational complexity of robust covariance estimator has prevented its local application or required a too high computational demand, here robust covariance estimation is selectively applied only on those image pixels most susceptible to covariance corruption. This is achieved by performing a quick local test at each pixel based on the sample kurtosis. Real data are employed to give experimental evidence of the performance provided by the proposed AD strategy in terms of both detection and computational efficiency.
2011
9781457722028
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/202126
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact