Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify and analyse a prominent example of adaptive system: robot swarms equipped with obstacle-avoidance self-assembly strategies. The analysis exploits the statistical model checker PVesta.
Modelling and Analyzing Adaptive Self-Assembly Strategies with Maude
BRUNI, ROBERTO;CORRADINI, ANDREA;GADDUCCI, FABIO;
2012-01-01
Abstract
Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify and analyse a prominent example of adaptive system: robot swarms equipped with obstacle-avoidance self-assembly strategies. The analysis exploits the statistical model checker PVesta.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.