We consider a topological field theory in three space-time dimensions. We show that certain observables of this model can be used to define a topological invariant for a punctured Riemann surface. By means of the operator surgery method, we compute the value of this invariant for a Riemann surface of arbitrary genus and with an arbitrary number of colored punctures on it.
Titolo: | Surgery and Topological Invariants of Punctured Riemann Surfaces |
Autori interni: | |
Anno del prodotto: | 1994 |
Abstract: | We consider a topological field theory in three space-time dimensions. We show that certain observables of this model can be used to define a topological invariant for a punctured Riemann surface. By means of the operator surgery method, we compute the value of this invariant for a Riemann surface of arbitrary genus and with an arbitrary number of colored punctures on it. |
Handle: | http://hdl.handle.net/11568/22654 |
ISBN: | 9810215827 |
Appare nelle tipologie: | 4.1 Contributo in Atti di convegno |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.