In this paper, we consider the all best swap edges problem in a distributed environment. We are given a 2-edge connected positively weighted network X, where all communication is routed through a rooted spanning tree T of X. If one tree edge e = {x, y} fails, the communication network will be disconnected. However, since X is 2-edge connected, communication can be restored by replacing e by non-tree edge e′, called a swap edge of e, whose ends lie in different components of T − e. Of all possible swap edges of e, we would like to choose the best, as defined by the application. The all best swap edges problem is to identify the best swap edge for every tree edge, so that in case of any edge failure, the best swap edge can be activated quickly. There are solutions to this problem for a number of cases in the literature. A major concern for all these solutions is to minimize the number of messages. However, especially in fault-transient environments, time is a crucial factor. In this paper we present a novel technique that addresses this problem from a time perspective; in fact, we present a distributed solution that works in linear time with respect to the height h of T for a number of differentcriteria, while retaining the optimal number of messages. To the best of our knowledge, all previous solutions solve the problem in O(h^2) time in the cases we consider.
Linear Time Distributed Swap Edge Algorithms
PAGLI, LINDA;PRENCIPE, GIUSEPPE
2013-01-01
Abstract
In this paper, we consider the all best swap edges problem in a distributed environment. We are given a 2-edge connected positively weighted network X, where all communication is routed through a rooted spanning tree T of X. If one tree edge e = {x, y} fails, the communication network will be disconnected. However, since X is 2-edge connected, communication can be restored by replacing e by non-tree edge e′, called a swap edge of e, whose ends lie in different components of T − e. Of all possible swap edges of e, we would like to choose the best, as defined by the application. The all best swap edges problem is to identify the best swap edge for every tree edge, so that in case of any edge failure, the best swap edge can be activated quickly. There are solutions to this problem for a number of cases in the literature. A major concern for all these solutions is to minimize the number of messages. However, especially in fault-transient environments, time is a crucial factor. In this paper we present a novel technique that addresses this problem from a time perspective; in fact, we present a distributed solution that works in linear time with respect to the height h of T for a number of differentcriteria, while retaining the optimal number of messages. To the best of our knowledge, all previous solutions solve the problem in O(h^2) time in the cases we consider.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.