We propose a pre-reordering scheme to improve the quality of machine translation by permuting the words of a source sentence to a target-like order. This is accomplished as a transition-based system that walks on the dependency parse tree of the sentence and emits words in target-like order, driven by a classifier trained on a parallel corpus. Our system is capable of generating arbitrary permutations up to flexible constraints determined by the choice of the classifier algorithm and input features.

Pre-reordering for machine translation using transition-based walks on dependency parse trees

ATTARDI, GIUSEPPE
2013

Abstract

We propose a pre-reordering scheme to improve the quality of machine translation by permuting the words of a source sentence to a target-like order. This is accomplished as a transition-based system that walks on the dependency parse tree of the sentence and emits words in target-like order, driven by a classifier trained on a parallel corpus. Our system is capable of generating arbitrary permutations up to flexible constraints determined by the choice of the classifier algorithm and input features.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/238561
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact