Ultrasound-guided biopsy is a proficient mininvasive approach for tumors staging but requires very long training and particular manual and 3D space perception abilities of the physician, for the planning of the needle trajectory and the execution of the procedure. In order to simplify this difficult task, we have developed an integrated system that provides the clinician two types of assistance: an augmented reality visualization allows accurate and easy planning of needle trajectory and target reaching verification; a robot arm with a six-degree-of-freedom force sensor allows the precise positioning of the needle holder and allows the clinician to adjust the planned trajectory (cooperative control) to overcome needle deflection and target motion. Preliminary tests have been executed on an ultrasound phantom showing high precision of the system in static conditions and the utility and usability of the cooperative control in simulated no-rigid conditions.

Ultrasound guided robotic biopsy using augmented reality and human-robot cooperative control

FERRARI, VINCENZO;
2009-01-01

Abstract

Ultrasound-guided biopsy is a proficient mininvasive approach for tumors staging but requires very long training and particular manual and 3D space perception abilities of the physician, for the planning of the needle trajectory and the execution of the procedure. In order to simplify this difficult task, we have developed an integrated system that provides the clinician two types of assistance: an augmented reality visualization allows accurate and easy planning of needle trajectory and target reaching verification; a robot arm with a six-degree-of-freedom force sensor allows the precise positioning of the needle holder and allows the clinician to adjust the planned trajectory (cooperative control) to overcome needle deflection and target motion. Preliminary tests have been executed on an ultrasound phantom showing high precision of the system in static conditions and the utility and usability of the cooperative control in simulated no-rigid conditions.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/429899
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 16
social impact