We discuss the use of a single generic linear combination of multiplication matrices, and its reordered Schur factorization, to find the roots of a system of multivariate polynomial equations. The principal contribution of this paper is to show how to reduce the multivariate problem to a univariate problem, even in the case of multiple roots, in a numerically stable way.

Reordered Schur factorization method for zero-dimensional polynomial systems with multiple roots

GIANNI, PATRIZIA;
1997

Abstract

We discuss the use of a single generic linear combination of multiplication matrices, and its reordered Schur factorization, to find the roots of a system of multivariate polynomial equations. The principal contribution of this paper is to show how to reduce the multivariate problem to a univariate problem, even in the case of multiple roots, in a numerically stable way.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/49426
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact