Multi-algebras allow to model nondeterminism in an algebraic framework by interpreting operators as functions from individual arguments to sets of possible results. We propose a functorial presentation of various categories of multi-algebras and partial algebras, analogous to the classical presentation of algebras over a signature Sigma as cartesian functors from the algebraic theory of Sigma, Th(Sigma), to Set. The functors we introduce are based on variations of the notion of theory, having a structure weaker than cartesian, and their target is Rel, the category of sets and relations. We argue that this functorial presentation provides an original abstract syntax for partial and multi-algebras.
Functorial semantics for multi-algebras
CORRADINI, ANDREA;GADDUCCI, FABIO
1998-01-01
Abstract
Multi-algebras allow to model nondeterminism in an algebraic framework by interpreting operators as functions from individual arguments to sets of possible results. We propose a functorial presentation of various categories of multi-algebras and partial algebras, analogous to the classical presentation of algebras over a signature Sigma as cartesian functors from the algebraic theory of Sigma, Th(Sigma), to Set. The functors we introduce are based on variations of the notion of theory, having a structure weaker than cartesian, and their target is Rel, the category of sets and relations. We argue that this functorial presentation provides an original abstract syntax for partial and multi-algebras.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.