Social discrimination discovery from data is an important task to identify illegal and unethical discriminatory patterns towards protected-by-law groups, e.g., ethnic minorities. We deploy privacy attack strategies as tools for discrimination discovery under hard assumptions which have rarely tackled in the literature: indirect discrimination discovery, privacy-aware discrimination discovery, and discrimination data recovery. The intuition comes from the intriguing parallel between the role of the anti-discrimination authority in the three scenarios above and the role of an attacker in private data publishing. We design strategies and algorithms inspired/based on Fr`echet bounds attacks, attribute inference attacks, and minimality attacks to the purpose of unveiling hidden discriminatory practices. Experimental results show that they can be effective tools in the hands of anti-discrimination authorities.

Anti-discrimination Analysis Using Privacy Attack Strategies

RUGGIERI, SALVATORE;
2014-01-01

Abstract

Social discrimination discovery from data is an important task to identify illegal and unethical discriminatory patterns towards protected-by-law groups, e.g., ethnic minorities. We deploy privacy attack strategies as tools for discrimination discovery under hard assumptions which have rarely tackled in the literature: indirect discrimination discovery, privacy-aware discrimination discovery, and discrimination data recovery. The intuition comes from the intriguing parallel between the role of the anti-discrimination authority in the three scenarios above and the role of an attacker in private data publishing. We design strategies and algorithms inspired/based on Fr`echet bounds attacks, attribute inference attacks, and minimality attacks to the purpose of unveiling hidden discriminatory practices. Experimental results show that they can be effective tools in the hands of anti-discrimination authorities.
2014
9783662448502
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/686265
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? ND
social impact