The paper describes our experiments addressing the SemEval 2014 task on the Analysis of Clinical text. Our approach consists in extending the techniques of NE recognition, based on sequence labelling, to address the special issues of this task, i.e. the presence of overlapping and discontiguous mentions and the requirement to map the mentions to unique identifiers. We explored using supervised methods in combination with word embeddings generated from unannotated data.

UniPi: Recognition of Mentions of Disorders in Clinical Text

ATTARDI, GIUSEPPE;COZZA, VITTORIA;SARTIANO, DANIELE
2014

Abstract

The paper describes our experiments addressing the SemEval 2014 task on the Analysis of Clinical text. Our approach consists in extending the techniques of NE recognition, based on sequence labelling, to address the special issues of this task, i.e. the presence of overlapping and discontiguous mentions and the requirement to map the mentions to unique identifiers. We explored using supervised methods in combination with word embeddings generated from unannotated data.
9781941643242
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/695469
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact