Learning-to-Rank models based on additive ensembles of regression trees have proven to be very effective for ranking query results returned by Web search engines, a scenario where quality and efficiency requirements are very demanding. Unfortunately, the computational cost of these ranking models is high. Thus, several works already proposed solutions aiming at improving the efficiency of the scoring process by dealing with features and peculiarities of modern CPUs and memory hierarchies. In this paper, we present QuickScorer, a new algorithm that adopts a novel bitvector representation of the tree-based ranking model, and performs an interleaved traversal of the ensemble by means of simple logical bitwise operations. The performance of the proposed algorithm are unprecedented, due to its cache-aware approach, both in terms of data layout and access patterns, and to a control flow that entails very low branch mis-prediction rates. The experiments on real Learning-to-Rank datasets show that QuickScorer is able to achieve speedups over the best state-of-the-art baseline ranging from 2x to 6.5x.

QuickScorer: a Fast Algorithm to Rank Documents with Additive Ensembles of Regression Trees

Tonellotto, Nicola;VENTURINI, ROSSANO
2015-01-01

Abstract

Learning-to-Rank models based on additive ensembles of regression trees have proven to be very effective for ranking query results returned by Web search engines, a scenario where quality and efficiency requirements are very demanding. Unfortunately, the computational cost of these ranking models is high. Thus, several works already proposed solutions aiming at improving the efficiency of the scoring process by dealing with features and peculiarities of modern CPUs and memory hierarchies. In this paper, we present QuickScorer, a new algorithm that adopts a novel bitvector representation of the tree-based ranking model, and performs an interleaved traversal of the ensemble by means of simple logical bitwise operations. The performance of the proposed algorithm are unprecedented, due to its cache-aware approach, both in terms of data layout and access patterns, and to a control flow that entails very low branch mis-prediction rates. The experiments on real Learning-to-Rank datasets show that QuickScorer is able to achieve speedups over the best state-of-the-art baseline ranging from 2x to 6.5x.
2015
978-1-4503-3621-5
File in questo prodotto:
File Dimensione Formato  
document.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2766462.2767733.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.47 MB
Formato Adobe PDF
1.47 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/753969
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 46
social impact