In this work we propose a novel acquisition strategy for accelerated 3D Compressive Sensing Magnetic Resonance Imaging (CS-MRI). This strategy is based on a 3D cartesian sampling with random switching of the frequency encoding direction with other K-space directions. Two 3D sampling strategies are presented. In the first strategy, the frequency encoding direction is randomly switched with one of the two phase encoding directions. In the second strategy, the frequency encoding direction is randomly chosen between all the directions of the K-Space. These strategies can lower the coherence of the acquisition, in order to produce reduced aliasing artifacts and to achieve a better image quality after Compressive Sensing (CS) reconstruction. Furthermore, the proposed strategies can reduce the typical smoothing of CS due to the limited sampling of high frequency locations. We demonstrated by means of simulations that the proposed acquisition strategies outperformed the standard Compressive Sensing acquisition. This results in a better quality of the reconstructed images and in a greater achievable acceleration.
A novel 3D Cartesian random sampling strategy for Compressive Sensing Magnetic Resonance Imaging
VALVANO, GIUSEPPE;MARTINI, NICOLA;SANTARELLI, MARIA FILOMENA;CHIAPPINO, DANTE;LANDINI, LUIGI
2015-01-01
Abstract
In this work we propose a novel acquisition strategy for accelerated 3D Compressive Sensing Magnetic Resonance Imaging (CS-MRI). This strategy is based on a 3D cartesian sampling with random switching of the frequency encoding direction with other K-space directions. Two 3D sampling strategies are presented. In the first strategy, the frequency encoding direction is randomly switched with one of the two phase encoding directions. In the second strategy, the frequency encoding direction is randomly chosen between all the directions of the K-Space. These strategies can lower the coherence of the acquisition, in order to produce reduced aliasing artifacts and to achieve a better image quality after Compressive Sensing (CS) reconstruction. Furthermore, the proposed strategies can reduce the typical smoothing of CS due to the limited sampling of high frequency locations. We demonstrated by means of simulations that the proposed acquisition strategies outperformed the standard Compressive Sensing acquisition. This results in a better quality of the reconstructed images and in a greater achievable acceleration.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.