In-vitro culture of liver cells on bio-inspired chips, namely liver-on-chip, to form a 3D hepatic tissue morphologically close to its in-vivo counterpart is rapidly emerging for drug testing applications. This paper reports preliminary results towards fabrication of an in-vitro model of the smallest functional liver unit, which is the hepatic lobule. Simultaneous fabrication of out-of-plane micro-channels interconnected by in-plane nanometric-channels is demonstrated by electrochemical etching of n-type silicon in aqueous (48%) HF: (30%) H2O2=1:1 (by vol.) electrolyte through the synergistic work of back-side illumination, avalanche breakdown, and high oxidizing power chemicals.

Towards an in-vitro liver lobule model

COZZI, CHIARA;POLITO, GIOVANNI;STRAMBINI, LUCANOS MARSILIO;BARILLARO, GIUSEPPE
2015-01-01

Abstract

In-vitro culture of liver cells on bio-inspired chips, namely liver-on-chip, to form a 3D hepatic tissue morphologically close to its in-vivo counterpart is rapidly emerging for drug testing applications. This paper reports preliminary results towards fabrication of an in-vitro model of the smallest functional liver unit, which is the hepatic lobule. Simultaneous fabrication of out-of-plane micro-channels interconnected by in-plane nanometric-channels is demonstrated by electrochemical etching of n-type silicon in aqueous (48%) HF: (30%) H2O2=1:1 (by vol.) electrolyte through the synergistic work of back-side illumination, avalanche breakdown, and high oxidizing power chemicals.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/782891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact