Determining the right amount of resources needed for a given computation is a critical problem. In many cases, computing systems are configured to use an amount of resources to manage high load peaks even though this cause energy waste when the resources are not fully utilised. To avoid this problem, adaptive approaches are used to dynamically increase/decrease computational resources depending on the real needs. A different approach based on Dynamic Voltage and Frequency Scaling (DVFS) is emerging as a possible alternative solution to reduce energy consumption of idle CPUs by lowering their frequencies. In this work, we propose to tackle the problem in stream parallel computations by using both the classic adaptivity concepts and the possibility provided by modern CPUs to dynamically change their frequency. We validate our approach showing a real network application that performs Deep Packet Inspection over network traffic. We are able to manage bandwidth changing over time, guaranteeing minimal packet loss during reconfiguration and minimal energy consumption.

Energy driven adaptivity in stream parallel computations

DANELUTTO, MARCO;DE SENSI, DANIELE;TORQUATI, MASSIMO
2015-01-01

Abstract

Determining the right amount of resources needed for a given computation is a critical problem. In many cases, computing systems are configured to use an amount of resources to manage high load peaks even though this cause energy waste when the resources are not fully utilised. To avoid this problem, adaptive approaches are used to dynamically increase/decrease computational resources depending on the real needs. A different approach based on Dynamic Voltage and Frequency Scaling (DVFS) is emerging as a possible alternative solution to reduce energy consumption of idle CPUs by lowering their frequencies. In this work, we propose to tackle the problem in stream parallel computations by using both the classic adaptivity concepts and the possibility provided by modern CPUs to dynamically change their frequency. We validate our approach showing a real network application that performs Deep Packet Inspection over network traffic. We are able to manage bandwidth changing over time, guaranteeing minimal packet loss during reconfiguration and minimal energy consumption.
2015
978-1-4799-8491-6
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/788001
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact