Much about the confinement and dynamical symmetry breaking in QCD might be learned from models with supersymmetry. In particular, models based on N=2 supersymmetric theories with gauge groups SU(N), SO(N) and USp(2N) and with various number of flavors, give deep dynamical hints about these phenomena. For instance, the BPS non-abelian monopoles can become the dominant degrees of freedom in the infrared due to quantum effects. Upon condensation (which can be triggered in these class of models by perturbing them with an adjoint scalar mass) they induce confinement with calculable pattern of dynamical symmetry breaking. This may occur either in a weakly interacting regime or in a strongly coupled regime (in the latter, often the low-energy degrees of freedom contain relatively non-local monopoles and dyons simultaneously and the system is near a nontrivial fixed-point). Also, the existence of sytems with BPS {\it non-abelian vortices} has been shown recently. These results point toward the idea that the ground state of QCD is a sort of dual superconductor of non-abelian variety.

NonAbelian superconductors: Lessons from supersymmetric gauge theories for QCD.

KONISHI, KENICHI
2003-01-01

Abstract

Much about the confinement and dynamical symmetry breaking in QCD might be learned from models with supersymmetry. In particular, models based on N=2 supersymmetric theories with gauge groups SU(N), SO(N) and USp(2N) and with various number of flavors, give deep dynamical hints about these phenomena. For instance, the BPS non-abelian monopoles can become the dominant degrees of freedom in the infrared due to quantum effects. Upon condensation (which can be triggered in these class of models by perturbing them with an adjoint scalar mass) they induce confinement with calculable pattern of dynamical symmetry breaking. This may occur either in a weakly interacting regime or in a strongly coupled regime (in the latter, often the low-energy degrees of freedom contain relatively non-local monopoles and dyons simultaneously and the system is near a nontrivial fixed-point). Also, the existence of sytems with BPS {\it non-abelian vortices} has been shown recently. These results point toward the idea that the ground state of QCD is a sort of dual superconductor of non-abelian variety.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/79782
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact