We reflect on the computational aspects that are embedded in life at the molecular and cellular level, where life machinery can be understood as a massively distributed system whose macroscopic behaviour is an emerging property of the interaction of its components. Such a relatively new perspective, clearly pursued by systems biology, is contributing to the view that biology is, in several respects, a quantitative science. The recent developments in biotechnology and synthetic biology, noticeably, are pushing the computational interpretation of biology even further, envisaging the possibility of a programmable biology. Several in-silico, in-vitro and in-vivo results make such a possibility a very concrete one. The long-term implications of such an “extended” idea of programmable living hardware, as well as the applications that we intend to develop on those “computers”, pose fundamental questions.
From Cells as Computation to Cells as Apps
CATALDO, ENRICO;MARANGONI, ROBERTO;
2016-01-01
Abstract
We reflect on the computational aspects that are embedded in life at the molecular and cellular level, where life machinery can be understood as a massively distributed system whose macroscopic behaviour is an emerging property of the interaction of its components. Such a relatively new perspective, clearly pursued by systems biology, is contributing to the view that biology is, in several respects, a quantitative science. The recent developments in biotechnology and synthetic biology, noticeably, are pushing the computational interpretation of biology even further, envisaging the possibility of a programmable biology. Several in-silico, in-vitro and in-vivo results make such a possibility a very concrete one. The long-term implications of such an “extended” idea of programmable living hardware, as well as the applications that we intend to develop on those “computers”, pose fundamental questions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.