Scoring documents with learning-to-rank (LtR) models based on large ensembles of regression trees is currently deemed one of the best solutions to effectively rank query results to be returned by large scale Information Retrieval systems. This extended abstract shortly summarizes the work in [4] proposing V-QuickScorer (vQS), an algorithm which exploits SIMD vector extensions on modern CPUs to perform the traversal of the ensamble in parallel by evaluating multiple documents simultaneously. We summarize the results of a comprehensive evaluation of vQS against state-of-the-art scoring algorithms showing that vQS outperforms competitors with speed-ups up to a factor of 2.4x.

Speeding-up document scoring with tree ensembles using CPU SIMD extensions

TONELLOTTO, NICOLA;VENTURINI, ROSSANO
2016-01-01

Abstract

Scoring documents with learning-to-rank (LtR) models based on large ensembles of regression trees is currently deemed one of the best solutions to effectively rank query results to be returned by large scale Information Retrieval systems. This extended abstract shortly summarizes the work in [4] proposing V-QuickScorer (vQS), an algorithm which exploits SIMD vector extensions on modern CPUs to perform the traversal of the ensamble in parallel by evaluating multiple documents simultaneously. We summarize the results of a comprehensive evaluation of vQS against state-of-the-art scoring algorithms showing that vQS outperforms competitors with speed-ups up to a factor of 2.4x.
File in questo prodotto:
File Dimensione Formato  
paper_7.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 133.83 kB
Formato Adobe PDF
133.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/820275
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact