Licensing requirements vary by country in terms of their scope, range of applicability and numerical values and may imply the use of system thermal hydraulic computer codes. Depending on the specific event scenario and on the purpose of the analysis, it might be required the availability of calculation methods that are not implemented in the standard system thermal hydraulic codes, as for burst temperature, burst strain and flow blockage calculations. This may imply the use of a dedicated fuel rod thermo-mechanical computer code, which can be coupled with thermal-hydraulic system and neutron kinetic codes to be used for the safety analysis. This paper describes the development and the application of a methodology for the analysis of the Large Break Loss of Coolant Accident (LB-LOCA) scenario in Atucha-2 Nuclear Power Plant (NPP), focusing on the procedure adopted for the use of the fuel rod thermo-mechanical code and its application for the safety analysis (Chapter 15 Final Safety Analysis Report, FSAR). The methodology implies the application of best estimate thermal-hydraulic, neutron physics and fuel pin performance computer codes, with the objective to verify the compliance with the specific acceptance criteria. The fuel pin performance code is applied with the main objective to evaluate the extent of cladding failures during the transient. A strong effort has been performed in order to enhance the fuel behaviour code capabilities and to improve the reliability of the code results.

Methodology for the Analysis of Fuel Behavior During LOCA and RIA for Licensing Purposes

D'AURIA, FRANCESCO SAVERIO
2012-01-01

Abstract

Licensing requirements vary by country in terms of their scope, range of applicability and numerical values and may imply the use of system thermal hydraulic computer codes. Depending on the specific event scenario and on the purpose of the analysis, it might be required the availability of calculation methods that are not implemented in the standard system thermal hydraulic codes, as for burst temperature, burst strain and flow blockage calculations. This may imply the use of a dedicated fuel rod thermo-mechanical computer code, which can be coupled with thermal-hydraulic system and neutron kinetic codes to be used for the safety analysis. This paper describes the development and the application of a methodology for the analysis of the Large Break Loss of Coolant Accident (LB-LOCA) scenario in Atucha-2 Nuclear Power Plant (NPP), focusing on the procedure adopted for the use of the fuel rod thermo-mechanical code and its application for the safety analysis (Chapter 15 Final Safety Analysis Report, FSAR). The methodology implies the application of best estimate thermal-hydraulic, neutron physics and fuel pin performance computer codes, with the objective to verify the compliance with the specific acceptance criteria. The fuel pin performance code is applied with the main objective to evaluate the extent of cladding failures during the transient. A strong effort has been performed in order to enhance the fuel behaviour code capabilities and to improve the reliability of the code results.
2012
978-0-7918-4497-7
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/831667
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact