Distributed Model Predictive Control refers to a class of predictive control architectures in which a number of local controllers manipulate a subset of inputs to regulate a subset of outputs composing the overall system. These controllers may cooperate to find an optimal control sequence that minimizes a global cost function, as in the case of Cooperative Distributed Model Predictive Control (CD-MPC). In this paper two linear CD-MPC algorithms for tracking are proposed. The aim of these controllers is to drive the outputs of the overall system to any admissible piece-wise constant set-point, satisfying input and state constraints. However, in the available literature this result is achieved by using a set of centralized variables that keep track of the global state of the system. In contrast, we develop novel CD-MPC approaches for tracking that rely on “as local as possible” information instead of the plant-wide information flow. These new control strategies reduce the required communication overhead, local computational demands, and are more scalable than CD-MPC algorithms available in the literature. We illustrate the main characteristics and benefits of the proposed approaches by means of a multiple evaporator process example.

Parsimonious Cooperative Distributed MPC for Tracking Piece-Wise Constant Setpoints

PANNOCCHIA, GABRIELE
2016-01-01

Abstract

Distributed Model Predictive Control refers to a class of predictive control architectures in which a number of local controllers manipulate a subset of inputs to regulate a subset of outputs composing the overall system. These controllers may cooperate to find an optimal control sequence that minimizes a global cost function, as in the case of Cooperative Distributed Model Predictive Control (CD-MPC). In this paper two linear CD-MPC algorithms for tracking are proposed. The aim of these controllers is to drive the outputs of the overall system to any admissible piece-wise constant set-point, satisfying input and state constraints. However, in the available literature this result is achieved by using a set of centralized variables that keep track of the global state of the system. In contrast, we develop novel CD-MPC approaches for tracking that rely on “as local as possible” information instead of the plant-wide information flow. These new control strategies reduce the required communication overhead, local computational demands, and are more scalable than CD-MPC algorithms available in the literature. We illustrate the main characteristics and benefits of the proposed approaches by means of a multiple evaporator process example.
File in questo prodotto:
File Dimensione Formato  
paper_ifac.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 355.53 kB
Formato Adobe PDF
355.53 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/836365
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact