The paper describes our sub-missions to the task on Named Entity rEcognition and Linking in Italian Tweets (NEEL-IT) at Evalita 2016. Our approach relies on a technique of Named Entity tagging that exploits both charac-ter-level and word-level embeddings. Character-based embeddings allow learn-ing the idiosyncrasies of the language used in tweets. Using a full-blown Named Entity tagger allows recognizing a wider range of entities than those well known by their presence in a Knowledge Base or gazetteer. Our submissions achieved first, second and fourth top offi-cial scores.

L’articolo descrive la nostra partecipazione al task di Named Entity rEcognition and Linking in Italian Tweets (NEEL-IT) a Evalita 2016. Il nostro approccio si basa sull’utilizzo di un Named Entity tagger che sfrutta embeddings sia character-level che word-level. I primi consentono di apprendere le idiosincrasie della scrittura nei tweet. L’uso di un tagger completo consente di riconoscere uno spettro più ampio di entità rispetto a quelle conosciute per la loro presenza in Knowledge Base o gazetteer. Le prove sottomesse hanno ottenuto il primo, secondo e quarto dei punteggi ufficiali.

Using Embeddings for Both Entity Recognition and Linking in Tweets

ATTARDI, GIUSEPPE;SIMI, MARIA;
2016-01-01

Abstract

The paper describes our sub-missions to the task on Named Entity rEcognition and Linking in Italian Tweets (NEEL-IT) at Evalita 2016. Our approach relies on a technique of Named Entity tagging that exploits both charac-ter-level and word-level embeddings. Character-based embeddings allow learn-ing the idiosyncrasies of the language used in tweets. Using a full-blown Named Entity tagger allows recognizing a wider range of entities than those well known by their presence in a Knowledge Base or gazetteer. Our submissions achieved first, second and fourth top offi-cial scores.
2016
L’articolo descrive la nostra partecipazione al task di Named Entity rEcognition and Linking in Italian Tweets (NEEL-IT) a Evalita 2016. Il nostro approccio si basa sull’utilizzo di un Named Entity tagger che sfrutta embeddings sia character-level che word-level. I primi consentono di apprendere le idiosincrasie della scrittura nei tweet. L’uso di un tagger completo consente di riconoscere uno spettro più ampio di entità rispetto a quelle conosciute per la loro presenza in Knowledge Base o gazetteer. Le prove sottomesse hanno ottenuto il primo, secondo e quarto dei punteggi ufficiali.
File in questo prodotto:
File Dimensione Formato  
NEELit_unipi.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 402.59 kB
Formato Adobe PDF
402.59 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/842279
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact