The paper describes our sub-missions to the task on Named Entity rEcognition and Linking in Italian Tweets (NEEL-IT) at Evalita 2016. Our approach relies on a technique of Named Entity tagging that exploits both charac-ter-level and word-level embeddings. Character-based embeddings allow learn-ing the idiosyncrasies of the language used in tweets. Using a full-blown Named Entity tagger allows recognizing a wider range of entities than those well known by their presence in a Knowledge Base or gazetteer. Our submissions achieved first, second and fourth top offi-cial scores.
L’articolo descrive la nostra partecipazione al task di Named Entity rEcognition and Linking in Italian Tweets (NEEL-IT) a Evalita 2016. Il nostro approccio si basa sull’utilizzo di un Named Entity tagger che sfrutta embeddings sia character-level che word-level. I primi consentono di apprendere le idiosincrasie della scrittura nei tweet. L’uso di un tagger completo consente di riconoscere uno spettro più ampio di entità rispetto a quelle conosciute per la loro presenza in Knowledge Base o gazetteer. Le prove sottomesse hanno ottenuto il primo, secondo e quarto dei punteggi ufficiali.
Using Embeddings for Both Entity Recognition and Linking in Tweets
ATTARDI, GIUSEPPE;SIMI, MARIA;
2016-01-01
Abstract
The paper describes our sub-missions to the task on Named Entity rEcognition and Linking in Italian Tweets (NEEL-IT) at Evalita 2016. Our approach relies on a technique of Named Entity tagging that exploits both charac-ter-level and word-level embeddings. Character-based embeddings allow learn-ing the idiosyncrasies of the language used in tweets. Using a full-blown Named Entity tagger allows recognizing a wider range of entities than those well known by their presence in a Knowledge Base or gazetteer. Our submissions achieved first, second and fourth top offi-cial scores.File | Dimensione | Formato | |
---|---|---|---|
NEELit_unipi.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
402.59 kB
Formato
Adobe PDF
|
402.59 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.