Pol-InSAR and 3D multibaseline SAR Tomography (Tomo-SAR) can extract rich information on complex scenarios with multiple scatterers mapped in the SAR cell, in particular for forest remote sensing. However, forest scenarios are characterized by a temporal decorrelating volume canopy scatterer, and a set of related open problems exists, in particular for Tomo-SAR techniques to be applied to spaceborne monitoring of biomass. Multipass 4D Differential Tomography (Diff-Tomo) is a promising advancement, furnishing space (height)-time signatures of multiple scatterer dynamics in the SAR cell, originally with urban applications. In this paper, to better characterize forest decorrelation phenomena impacting Tomo-SAR/Pol-InSAR, experimental results are presented of the extension of Diff-Tomo methods for analyzing vegetated scenes, to extract jointly geometric and dynamic information of forest layers, at both the long and short time scale. The Diff-Tomo enabled functionality of separation in the height dimension of different temporal coherence levels (“coherence profilingâ€) that are mixed (undiscriminated) in classical total coherence analyses is extensively applied to airborne P-band multipolarimetric data, and results of this investigation are shown. Also, first ground-based radar results are presented of an innovative profiling along the height dimension of the short-term coherence, in particular aiming to characterize the magnitudes of short-term coherence times. Their expected variability along the tree structures is confirmed for the first time.
4D Characterization of Short- and Long-term Height-varying Decorrelated Forest SAR Backscattering
LOMBARDINI, FABRIZIO;
2015-01-01
Abstract
Pol-InSAR and 3D multibaseline SAR Tomography (Tomo-SAR) can extract rich information on complex scenarios with multiple scatterers mapped in the SAR cell, in particular for forest remote sensing. However, forest scenarios are characterized by a temporal decorrelating volume canopy scatterer, and a set of related open problems exists, in particular for Tomo-SAR techniques to be applied to spaceborne monitoring of biomass. Multipass 4D Differential Tomography (Diff-Tomo) is a promising advancement, furnishing space (height)-time signatures of multiple scatterer dynamics in the SAR cell, originally with urban applications. In this paper, to better characterize forest decorrelation phenomena impacting Tomo-SAR/Pol-InSAR, experimental results are presented of the extension of Diff-Tomo methods for analyzing vegetated scenes, to extract jointly geometric and dynamic information of forest layers, at both the long and short time scale. The Diff-Tomo enabled functionality of separation in the height dimension of different temporal coherence levels (“coherence profilingâ€) that are mixed (undiscriminated) in classical total coherence analyses is extensively applied to airborne P-band multipolarimetric data, and results of this investigation are shown. Also, first ground-based radar results are presented of an innovative profiling along the height dimension of the short-term coherence, in particular aiming to characterize the magnitudes of short-term coherence times. Their expected variability along the tree structures is confirmed for the first time.File | Dimensione | Formato | |
---|---|---|---|
IGARSS_2015_Lomb_Viv2 .pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
8.81 MB
Formato
Adobe PDF
|
8.81 MB | Adobe PDF | Visualizza/Apri |
Igarss15_07326076.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
8.83 MB
Formato
Adobe PDF
|
8.83 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.