In this paper, we model fresh names in the pi-calculus using abstractions with respect to a new binding operator theta. Both the theory and the metatheory of the pi-calculus benefit from this simple extension. The operational semantics of this new calculus is finitely branching. Bisimulation can be given without mentioning any constraint on names, thus allowing for a straightforward definition of a coalgebraic semantics, within a category of coalgebras over permutation algebras. Following previous work by Montanari and Pistore, we present also a finite representation for finitary processes and a finite state verification procedure for bisimilarity, based on the new notion of theta-automaton.

Modeling Fresh Names in pi-calculus Using Abstractions

BRUNI, ROBERTO;
2004-01-01

Abstract

In this paper, we model fresh names in the pi-calculus using abstractions with respect to a new binding operator theta. Both the theory and the metatheory of the pi-calculus benefit from this simple extension. The operational semantics of this new calculus is finitely branching. Bisimulation can be given without mentioning any constraint on names, thus allowing for a straightforward definition of a coalgebraic semantics, within a category of coalgebras over permutation algebras. Following previous work by Montanari and Pistore, we present also a finite representation for finitary processes and a finite state verification procedure for bisimilarity, based on the new notion of theta-automaton.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/84836
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact