A general procedure to evaluate future trends in snow loads on structures is illustrated aiming to study influences of climate change at European scale, to assess its impact on the design of new structures as well as on the reliability levels of existing ones, also in view of the next revision of the Eurocodes. Analysing high quality registered meteorological data of daily temperatures, rain and snow precipitations in nine Italian weather stations, conditional probability functions of occurrence of snow precipitation, accumulation and melting have been preliminarily determined as functions of daily air temperatures. By means of Monte Carlo simulations and based upon daily output of climate models (daily max. and min. temperatures and water precipitation) yearly maxima of snow loads for various time intervals of 40 years in the period 1980-2100 have been simulated, deriving, via the extreme value theory, the characteristic ground snow loads at the sites. Then, the proposed procedure has been implemented in a more general methodology for snow map updating, in such a way that the influence of gridded data of precipitation, predicted by global climate models, on extreme values of snow loads is duly assessed. Preliminary results demonstrate that the outlined procedure is very promising and allows to estimate the evolution of characteristic ground snow loads and to define updated ground snow load maps for different climate models and scenarios.

Climate Change: impact on snow loads on structures

CROCE, PIETRO;FORMICHI, PAOLO;Landi, Filippo;
2017-01-01

Abstract

A general procedure to evaluate future trends in snow loads on structures is illustrated aiming to study influences of climate change at European scale, to assess its impact on the design of new structures as well as on the reliability levels of existing ones, also in view of the next revision of the Eurocodes. Analysing high quality registered meteorological data of daily temperatures, rain and snow precipitations in nine Italian weather stations, conditional probability functions of occurrence of snow precipitation, accumulation and melting have been preliminarily determined as functions of daily air temperatures. By means of Monte Carlo simulations and based upon daily output of climate models (daily max. and min. temperatures and water precipitation) yearly maxima of snow loads for various time intervals of 40 years in the period 1980-2100 have been simulated, deriving, via the extreme value theory, the characteristic ground snow loads at the sites. Then, the proposed procedure has been implemented in a more general methodology for snow map updating, in such a way that the influence of gridded data of precipitation, predicted by global climate models, on extreme values of snow loads is duly assessed. Preliminary results demonstrate that the outlined procedure is very promising and allows to estimate the evolution of characteristic ground snow loads and to define updated ground snow load maps for different climate models and scenarios.
File in questo prodotto:
File Dimensione Formato  
ICSE2016_Climate_and_snow.pdf

accesso aperto

Descrizione: Articolo completo
Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.59 MB
Formato Adobe PDF
1.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/862551
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact