We review our research work in recent years on the properties of neutron-rich nuclear matter within the framework of the Brueckner theory extended to include a microscopic three-body force (TBF). We discuss specially the TBF effect on the equation of state and the singleparticle (s.p.) potentials. The TBF turns out to be crucial for describing the saturation properties of nuclear matter in nonrelativistic microscopic framework. The TBF effect on the EOS of neutron-rich nuclear matter is to result in a significant stiffening of its isovector part at supra-saturation densities. Within the Brueckner approach, the TBF may lead to a rearrangement contribution to the s.p. potentials, which enhances strongly the repulsion and momentum-dependence of the s.p. potentials at high densities and high momenta. Our results are also compared with the predictions by other ab initio approaches.

Three-body force effect on the properties of neutron-rich nuclear matter

BOMBACI, IGNAZIO;
2016-01-01

Abstract

We review our research work in recent years on the properties of neutron-rich nuclear matter within the framework of the Brueckner theory extended to include a microscopic three-body force (TBF). We discuss specially the TBF effect on the equation of state and the singleparticle (s.p.) potentials. The TBF turns out to be crucial for describing the saturation properties of nuclear matter in nonrelativistic microscopic framework. The TBF effect on the EOS of neutron-rich nuclear matter is to result in a significant stiffening of its isovector part at supra-saturation densities. Within the Brueckner approach, the TBF may lead to a rearrangement contribution to the s.p. potentials, which enhances strongly the repulsion and momentum-dependence of the s.p. potentials at high densities and high momenta. Our results are also compared with the predictions by other ab initio approaches.
2016
9788874381012
File in questo prodotto:
File Dimensione Formato  
epjconf_nn2016_07012.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 143.75 kB
Formato Adobe PDF
143.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/866453
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact