With the increasing use of renewable energy sources, Gas Turbines (GTs) are currently required to accomplish more flexible operations for supplying the back-up energy. As a result, thermo-mechanical fatigue issues in the GTs components are emphasized. In this paper, the design of a novel rig for assessing the fatigue behavior in the trailing edge of full scale GTs blades is presented. Based on a detailed Finite Element (FE) analysis of the blade response under thermo-mechanical loads, it is demonstrated that the stress and strain cycles arising in this area during a start-up/shut-down transient can be accurately reproduced by clamping the blade in the shank zone and applying a transversal load to the trailing edge. It is also shown that the stress/strain states can be obtained using a Test Article (TA) extracted from the actual blade. In this configuration, the load magnitude and direction, and the distance of the application point from the blade platform are the test control parameters. A FE model simulating the TA test is developed to determine the test parameters. A tooling for clamping and loading the TA is finally proposed along with a rig apparatus consisting of standard equipment used in material testing.

High temperature fatigue testing of gas turbine blades

M. Beghini;L. Bertini;C. Santus;B. D. Monelli
;
2017-01-01

Abstract

With the increasing use of renewable energy sources, Gas Turbines (GTs) are currently required to accomplish more flexible operations for supplying the back-up energy. As a result, thermo-mechanical fatigue issues in the GTs components are emphasized. In this paper, the design of a novel rig for assessing the fatigue behavior in the trailing edge of full scale GTs blades is presented. Based on a detailed Finite Element (FE) analysis of the blade response under thermo-mechanical loads, it is demonstrated that the stress and strain cycles arising in this area during a start-up/shut-down transient can be accurately reproduced by clamping the blade in the shank zone and applying a transversal load to the trailing edge. It is also shown that the stress/strain states can be obtained using a Test Article (TA) extracted from the actual blade. In this configuration, the load magnitude and direction, and the distance of the application point from the blade platform are the test control parameters. A FE model simulating the TA test is developed to determine the test parameters. A tooling for clamping and loading the TA is finally proposed along with a rig apparatus consisting of standard equipment used in material testing.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/883280
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 15
social impact