The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets. In 2017, one of two tasks was devoted to learning dependency parsers for a large number of languages, in a real-world setting without any gold-standard annotation on input. All test sets followed a unified annotation scheme, namely that of Universal Dependencies. In this paper, we define the task and evaluation methodology, describe data preparation, report and analyze the main results, and provide a brief categorization of the different approaches of the participating system

CoNLL 2017 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

SANGUINETTI, MANUELA;Maria Simi;
2017-01-01

Abstract

The Conference on Computational Natural Language Learning (CoNLL) features a shared task, in which participants train and test their learning systems on the same data sets. In 2017, one of two tasks was devoted to learning dependency parsers for a large number of languages, in a real-world setting without any gold-standard annotation on input. All test sets followed a unified annotation scheme, namely that of Universal Dependencies. In this paper, we define the task and evaluation methodology, describe data preparation, report and analyze the main results, and provide a brief categorization of the different approaches of the participating system
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/901764
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 257
  • ???jsp.display-item.citation.isi??? ND
social impact