Thermal-hydraulic system computer codes are extensively used worldwide for analysis of nuclear facilities by utilities, regulatory bodies, nuclear power plant designers and vendors, nuclear fuel companies, research organizations, consulting companies, and technical support organizations. The computer code user represents a source of uncertainty that can influence the results of system code calculations. This influence is commonly known as the ‘user effect’ and stems from the limitations embedded in the codes as well as from the limited capability of the analysts to use the codes. Code user training and qualification is an effective means for reducing the variation of results caused by the application of the codes by different users. This paper describes a systematic approach to training code users who, upon completion of the training, should be able to perform calculations making the best possible use of the capabilities of best estimate codes. In other words, the program aims at contributing towards solving the problem of user effect. The 3D S.UN.COP (Scaling, Uncertainty and 3D COuPled code calculations) seminars have been organized as follow-up of the proposal to IAEA for the Permanent Training Course for System Code Users. Eleven seminars have been held at University of Pisa (two in 2004), at The Pennsylvania State University (2004), at the University of Zagreb (2005), at the School of Industrial Engineering of Barcelona (January-February 2006), in Buenos Aires, Argentina (October 2006), requested by Autoridad Regulatoria Nuclear (ARN), Nucleoelectrica Argentina S.A (NA-SA) and Comisión Nacional de Energía Atómica (CNEA), at the College Station, Texas A&M, (January-February 2007), in Hamilton and Niagara Falls, Ontario (October 2007) requested by Atomic Energy Canada Limited (AECL), Canadian Nuclear Society (CNS) and Canadian Nuclear Safety Commission (CNSC), in Petten, The Netherlands (October 2008) in cooperation with the Institute of Energy of the Joint Research Center of the European Commission (IE-JRC-EC), at the Royal Institute of Technology, Stockholm (October 2009) and in Petten, The Netherlands (October 2010) in cooperation with the Institute of Energy of the Joint Research Center of the European Commission (IE-JRC-EC). It was recognized that such courses represented both a source of continuing education for current code users and a mean for current code users to enter the formal training structure of a proposed ‘permanent’ stepwise approach to user training. The 3D S.UN.COP 2010 at IE-JRC was successfully held with the attendance of 23 participants coming from more than 10 countries and 20 different institutions (universities, vendors and national laboratories). More than 30 scientists (coming from more than 10 countries and 20 different institutions) were involved in the organization of the seminar, presenting theoretical aspects of the proposed methodologies and holding the training and the final examination. A certificate (LA Code User grade) was released to participants that successfully solved the assigned problems. The eleventh seminar has been held (March 2011) in Wilmington, North Carolina, involving more than 30 scientists between lecturers and code developers (http://www.nrgspg.ing.unipi.it/3dsuncop/).
International Training Program in Support of Safety Analysis: 3C S.UN.COP – Scaling, Uncertainty and 3D Thermal-Hydraulics/Neutron-Kinetics Coupled Codes Seminars
D’Auria Francesco
Secondo
Conceptualization
;
2011-01-01
Abstract
Thermal-hydraulic system computer codes are extensively used worldwide for analysis of nuclear facilities by utilities, regulatory bodies, nuclear power plant designers and vendors, nuclear fuel companies, research organizations, consulting companies, and technical support organizations. The computer code user represents a source of uncertainty that can influence the results of system code calculations. This influence is commonly known as the ‘user effect’ and stems from the limitations embedded in the codes as well as from the limited capability of the analysts to use the codes. Code user training and qualification is an effective means for reducing the variation of results caused by the application of the codes by different users. This paper describes a systematic approach to training code users who, upon completion of the training, should be able to perform calculations making the best possible use of the capabilities of best estimate codes. In other words, the program aims at contributing towards solving the problem of user effect. The 3D S.UN.COP (Scaling, Uncertainty and 3D COuPled code calculations) seminars have been organized as follow-up of the proposal to IAEA for the Permanent Training Course for System Code Users. Eleven seminars have been held at University of Pisa (two in 2004), at The Pennsylvania State University (2004), at the University of Zagreb (2005), at the School of Industrial Engineering of Barcelona (January-February 2006), in Buenos Aires, Argentina (October 2006), requested by Autoridad Regulatoria Nuclear (ARN), Nucleoelectrica Argentina S.A (NA-SA) and Comisión Nacional de Energía Atómica (CNEA), at the College Station, Texas A&M, (January-February 2007), in Hamilton and Niagara Falls, Ontario (October 2007) requested by Atomic Energy Canada Limited (AECL), Canadian Nuclear Society (CNS) and Canadian Nuclear Safety Commission (CNSC), in Petten, The Netherlands (October 2008) in cooperation with the Institute of Energy of the Joint Research Center of the European Commission (IE-JRC-EC), at the Royal Institute of Technology, Stockholm (October 2009) and in Petten, The Netherlands (October 2010) in cooperation with the Institute of Energy of the Joint Research Center of the European Commission (IE-JRC-EC). It was recognized that such courses represented both a source of continuing education for current code users and a mean for current code users to enter the formal training structure of a proposed ‘permanent’ stepwise approach to user training. The 3D S.UN.COP 2010 at IE-JRC was successfully held with the attendance of 23 participants coming from more than 10 countries and 20 different institutions (universities, vendors and national laboratories). More than 30 scientists (coming from more than 10 countries and 20 different institutions) were involved in the organization of the seminar, presenting theoretical aspects of the proposed methodologies and holding the training and the final examination. A certificate (LA Code User grade) was released to participants that successfully solved the assigned problems. The eleventh seminar has been held (March 2011) in Wilmington, North Carolina, involving more than 30 scientists between lecturers and code developers (http://www.nrgspg.ing.unipi.it/3dsuncop/).File | Dimensione | Formato | |
---|---|---|---|
925-11451.pdf
accesso aperto
Descrizione: full document
Tipologia:
Versione finale editoriale
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
207.41 kB
Formato
Adobe PDF
|
207.41 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.