The paper describes our submission to the shared task on DGA classification at DMD 2018. The approach is based on a Deep Learning architecture using bidirectional LSTM neural networks. Similar models are used in both the tasks, the first one is to identify the DGA generated domain name and the second one is to detect and categorize the DGA generated domain name to their botnet family.

Bidirectional LSTM models for DGA classification

Daniele Sartiano
;
Giuseppe Attardi
2018-01-01

Abstract

The paper describes our submission to the shared task on DGA classification at DMD 2018. The approach is based on a Deep Learning architecture using bidirectional LSTM neural networks. Similar models are used in both the tasks, the first one is to identify the DGA generated domain name and the second one is to detect and categorize the DGA generated domain name to their botnet family.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/926408
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact