Unmanned aerial vehicles have gained a lot of interest in recent times, due to their potential use in several civil applications. This paper focuses on the use of an autonomous swarm of drones to detect and map a toxic cloud. A possible real-world scenario is the accidental release of hazardous gases into the air, resulting from fire or an explosion at an industrial site. The proposed method is based on the concept of swarm intelligence: each drone (agent) performs basic interactions with the environment and with other drones, without need for a centralized coordination technique. More precisely, the method combines collision avoidance, flocking, stigmergy-based communication, and a cloud exploration behavior called inside-outside. For the experiments we developed a simulator using the NetLogo environment, and tested different combinations of these emergent behaviors on two scenarios. Parameters were tuned using differential evolution and separate scenarios. Results show that the combined use of different emergent techniques is beneficial, as the proposed method outperformed random flight as well as an exhaustive search throughout the explored area. In addition, results show little variance considering two different cloud shapes.

Detection and mapping of a toxic cloud using UAVs and emergent techniques

Marco Avvenuti;Mario G. C. A. Cimino;Gigliola Vaglini
2018-01-01

Abstract

Unmanned aerial vehicles have gained a lot of interest in recent times, due to their potential use in several civil applications. This paper focuses on the use of an autonomous swarm of drones to detect and map a toxic cloud. A possible real-world scenario is the accidental release of hazardous gases into the air, resulting from fire or an explosion at an industrial site. The proposed method is based on the concept of swarm intelligence: each drone (agent) performs basic interactions with the environment and with other drones, without need for a centralized coordination technique. More precisely, the method combines collision avoidance, flocking, stigmergy-based communication, and a cloud exploration behavior called inside-outside. For the experiments we developed a simulator using the NetLogo environment, and tested different combinations of these emergent behaviors on two scenarios. Parameters were tuned using differential evolution and separate scenarios. Results show that the combined use of different emergent techniques is beneficial, as the proposed method outperformed random flight as well as an exhaustive search throughout the explored area. In addition, results show little variance considering two different cloud shapes.
2018
978-3-030-05917-0
File in questo prodotto:
File Dimensione Formato  
cimino_pub63.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 427.57 kB
Formato Adobe PDF
427.57 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/933201
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact