The hydraulic performance of a centrifugal turbopump with and without a 3-bladed axial inducer has been studied both experimentally and numerically. A 3D numerical model has been used to simulate the flow through from the inlet to the outlet ducts of the turbopump with and without an inducer using the ANSYS CFX code. The sensitivity of the numerical results has been analyzed with reference to the adopted turbulent flow models, to the length of the input and output ducts included in the simulations, to the reference positions used for the evaluation of the total pressure rise and to the temperature of the operating fluid. The measured and predicted hydraulic performances of the turbopump with and without the inducer have been compared under different operating conditions. As expected, the predicted hydraulic performance of the turbopump is significantly influenced by the lengths of the inlet and outlet ducts, the turbulence models and, at low flow rates, the reference positions of the total pressure rise measurements. The pressure rise coefficients obtained from the simulations using an inlet duct with length of 3 rTi and 10 rTi were significantly lower than the experimental results, while at low flow rates those referring to the inlet duct with length greater than 10 rTi were significantly higher than those obtained for the shorter inlet duct. With reference to the effect of the pressure measurement locations, the difference between the numerical results of the pressure rise coefficient and the experimental values was much higher when the data were obtained at the locations where the transducers was mounted in the experimental tests at lower flow rates. Moreover, the hydraulic performance of the turbopump at lower flow rates can be significantly influenced by the use of the upstream inducer, with a pressure drop of 20% in particular at 60% of the design flow rate.

Experimental and numerical study on hydraulic performances of a turbopump with and without an inducer

Pace, Giovanni;Pasini, Angelo;Valentini, Dario;D'Agostino, Luca
Ultimo
Supervision
2018-01-01

Abstract

The hydraulic performance of a centrifugal turbopump with and without a 3-bladed axial inducer has been studied both experimentally and numerically. A 3D numerical model has been used to simulate the flow through from the inlet to the outlet ducts of the turbopump with and without an inducer using the ANSYS CFX code. The sensitivity of the numerical results has been analyzed with reference to the adopted turbulent flow models, to the length of the input and output ducts included in the simulations, to the reference positions used for the evaluation of the total pressure rise and to the temperature of the operating fluid. The measured and predicted hydraulic performances of the turbopump with and without the inducer have been compared under different operating conditions. As expected, the predicted hydraulic performance of the turbopump is significantly influenced by the lengths of the inlet and outlet ducts, the turbulence models and, at low flow rates, the reference positions of the total pressure rise measurements. The pressure rise coefficients obtained from the simulations using an inlet duct with length of 3 rTi and 10 rTi were significantly lower than the experimental results, while at low flow rates those referring to the inlet duct with length greater than 10 rTi were significantly higher than those obtained for the shorter inlet duct. With reference to the effect of the pressure measurement locations, the difference between the numerical results of the pressure rise coefficient and the experimental values was much higher when the data were obtained at the locations where the transducers was mounted in the experimental tests at lower flow rates. Moreover, the hydraulic performance of the turbopump at lower flow rates can be significantly influenced by the use of the upstream inducer, with a pressure drop of 20% in particular at 60% of the design flow rate.
2018
9780791851579
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/937154
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact