This paper proposes a novel formulation of economic MPC for nonlinear discrete-time systems that is able to drive the closed-loop system to the (unknown) optimal equilibrium, despite the presence of plant/model mismatch. The proposed algorithm takes advantage of: (i) an augmented system model which includes integrating disturbance states as commonly used in offset-free tracking MPC; (ii) a modifier-adaptation strategy to correct the asymptotic equilibrium reached by the closed-loop system. It is shown that, whenever convergence occurs, the reached equilibrium is the true optimal one achievable by the plant. An example of a CSTR is used to show the superior performance with respect to conventional economic MPC and a previously proposed offset-free MPC still based on a tracking cost. The implementation of this offset-free economic MPC requires knowledge of plant input-output steady-state map gradient, which is generally not available. To this aim a simple linear identification procedure is explored numerically for the CSTR example, showing that convergence to a neighborhood of the optimal equilibrium is possible.

An economic MPC formulation with offset-free asymptotic performance

Pannocchia, Gabriele
2018-01-01

Abstract

This paper proposes a novel formulation of economic MPC for nonlinear discrete-time systems that is able to drive the closed-loop system to the (unknown) optimal equilibrium, despite the presence of plant/model mismatch. The proposed algorithm takes advantage of: (i) an augmented system model which includes integrating disturbance states as commonly used in offset-free tracking MPC; (ii) a modifier-adaptation strategy to correct the asymptotic equilibrium reached by the closed-loop system. It is shown that, whenever convergence occurs, the reached equilibrium is the true optimal one achievable by the plant. An example of a CSTR is used to show the superior performance with respect to conventional economic MPC and a previously proposed offset-free MPC still based on a tracking cost. The implementation of this offset-free economic MPC requires knowledge of plant input-output steady-state map gradient, which is generally not available. To this aim a simple linear identification procedure is explored numerically for the CSTR example, showing that convergence to a neighborhood of the optimal equilibrium is possible.
File in questo prodotto:
File Dimensione Formato  
paper.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 4.97 MB
Formato Adobe PDF
4.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/940895
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 9
social impact