Quasi-trivial (QT) sequences are a class of lamination stacks for which, in the framework of Classical Laminate Theory (CLT), the properties of uncoupling and/or homogeneity are veried in a closed-form solution [1]. These sequences have received great attention from the scientic community as they have proved to be an extremely powerful tool for the design and optimization of composite laminates. Nevertheless, two main reasons limit their adoption: rst, to nd QT sequences, a complex algorithm is required; second, calculations become computationally intensive for long QT sequences, thus limiting the maximum number of plies attainable. This constrains the use of QT stacks to applications involving only thin laminates. In order to exploit QT stacks for thick laminates new tools are proposed. Firstly, a new and more ecient algorithm for nding QT stacking sequences is developed and an original procedure is devised to eectively code it. The proposed algorithm nds a greater number of QT solutions, with respect to those given in [1]. Additionally, analytical relationships to obtain new QT sequences by superposition of known QT sequences are presented in [2]. Thanks to this new class of closed-form solutions, laminates can be designed using QT stacking sequences without limitations on the maximum number of plies. The results presented in this work open new possibilities for the design and optimisation of thick laminates. In addition, laminates with special requirements may be designed by superposition of QT stacks, thus reaching specic design goals that cannot otherwise be met.

Quasi-trivial solutions for uncoupled, homogeneous and quasi-homogeneous laminates with high number of plies

TORQUATO GARULLI
Primo
;
DANIELE FANTERIA
Ultimo
2018-01-01

Abstract

Quasi-trivial (QT) sequences are a class of lamination stacks for which, in the framework of Classical Laminate Theory (CLT), the properties of uncoupling and/or homogeneity are veried in a closed-form solution [1]. These sequences have received great attention from the scientic community as they have proved to be an extremely powerful tool for the design and optimization of composite laminates. Nevertheless, two main reasons limit their adoption: rst, to nd QT sequences, a complex algorithm is required; second, calculations become computationally intensive for long QT sequences, thus limiting the maximum number of plies attainable. This constrains the use of QT stacks to applications involving only thin laminates. In order to exploit QT stacks for thick laminates new tools are proposed. Firstly, a new and more ecient algorithm for nding QT stacking sequences is developed and an original procedure is devised to eectively code it. The proposed algorithm nds a greater number of QT solutions, with respect to those given in [1]. Additionally, analytical relationships to obtain new QT sequences by superposition of known QT sequences are presented in [2]. Thanks to this new class of closed-form solutions, laminates can be designed using QT stacking sequences without limitations on the maximum number of plies. The results presented in this work open new possibilities for the design and optimisation of thick laminates. In addition, laminates with special requirements may be designed by superposition of QT stacks, thus reaching specic design goals that cannot otherwise be met.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/946049
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact