GINGER (Gyroscopes IN General Relativity) is a project aiming at measuring the Lense-Thirring effect, at 1% level, with an experiment on earth. It is based on an array of ring-lasers, which are the most sensitive inertial sensors to measure the rotation rate of the Earth. The GINGER project is still under discussion; the experiment G-GranSasso is an R&D experiment financed by INFN Group II, it is studying the key points of GINGER and at the same time developing prototypes. In the following the signal coming out of a ring-laser and the present sensitivity are described.The prototypes GP2 and GINGERino and the preliminary results are reported. This project is inter-disciplinary since ring-lasers provide informations for the fast variation of the earth rotation rate, they are used for the rotational seismology and for top sensitivity angle metrology.
The GINGER Project
Belfi J;Bosi F;Beverini N;Carelli G;Giacomelli U;Maccioni E;
2017-01-01
Abstract
GINGER (Gyroscopes IN General Relativity) is a project aiming at measuring the Lense-Thirring effect, at 1% level, with an experiment on earth. It is based on an array of ring-lasers, which are the most sensitive inertial sensors to measure the rotation rate of the Earth. The GINGER project is still under discussion; the experiment G-GranSasso is an R&D experiment financed by INFN Group II, it is studying the key points of GINGER and at the same time developing prototypes. In the following the signal coming out of a ring-laser and the present sensitivity are described.The prototypes GP2 and GINGERino and the preliminary results are reported. This project is inter-disciplinary since ring-lasers provide informations for the fast variation of the earth rotation rate, they are used for the rotational seismology and for top sensitivity angle metrology.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.