In this paper, we discuss an applic ation of Maximum Entropy to modeling the acquisition of subject and object processing in Italian. The model is able to learn from corpus data a set of experimentally and theoretically well-motivated linguistic constraints, as well as their relative salience in Italian grammar development and processing. The model is also shown to acquire robust syntactic generalizations by relying on the evidence provided by a small number of high token frequency verbs only. These results are consistent with current research focusing on the role of high frequency verbs in allowing children to converge on the most salient constraints in the grammar.

Climbing the Path to Grammar: a Maximum Entropy Model of Subject/Object Learning

LENCI, ALESSANDRO;
2005-01-01

Abstract

In this paper, we discuss an applic ation of Maximum Entropy to modeling the acquisition of subject and object processing in Italian. The model is able to learn from corpus data a set of experimentally and theoretically well-motivated linguistic constraints, as well as their relative salience in Italian grammar development and processing. The model is also shown to acquire robust syntactic generalizations by relying on the evidence provided by a small number of high token frequency verbs only. These results are consistent with current research focusing on the role of high frequency verbs in allowing children to converge on the most salient constraints in the grammar.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/95717
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact