In this paper, a novel architecture of Recurrent Neural Network (RNN) is designed and experimented. The proposed RNN adopts a computational memory based on the concept of stigmergy. The basic principle of a Stigmergic Memory (SM) is that the activity of deposit/removal of a quantity in the SM stimulates the next activities of deposit/removal. Accordingly, subsequent SM activities tend to reinforce/weaken each other, generating a coherent coordination between the SM activities and the input temporal stimulus. We show that, in a problem of supervised classification, the SM encodes the temporal input in an emergent representational model, by coordinating the deposit, removal and classification activities. This study lays down a basic framework for the derivation of a SM-RNN. A formal ontology of SM is discussed, and the SM-RNN architecture is detailed. To appreciate the computational power of an SM-RNN, comparative NNs have been selected and trained to solve the MNIST handwritten digits recognition benchmark in its two variants: spatial (sequences of bitmap rows) and temporal (sequences of pen strokes).
Using stigmergy as a computational memory in the design of recurrent neural networks
F. A. Galatolo;M. G. C. A. Cimino;G. Vaglini
2019-01-01
Abstract
In this paper, a novel architecture of Recurrent Neural Network (RNN) is designed and experimented. The proposed RNN adopts a computational memory based on the concept of stigmergy. The basic principle of a Stigmergic Memory (SM) is that the activity of deposit/removal of a quantity in the SM stimulates the next activities of deposit/removal. Accordingly, subsequent SM activities tend to reinforce/weaken each other, generating a coherent coordination between the SM activities and the input temporal stimulus. We show that, in a problem of supervised classification, the SM encodes the temporal input in an emergent representational model, by coordinating the deposit, removal and classification activities. This study lays down a basic framework for the derivation of a SM-RNN. A formal ontology of SM is discussed, and the SM-RNN architecture is detailed. To appreciate the computational power of an SM-RNN, comparative NNs have been selected and trained to solve the MNIST handwritten digits recognition benchmark in its two variants: spatial (sequences of bitmap rows) and temporal (sequences of pen strokes).File | Dimensione | Formato | |
---|---|---|---|
arpi-unipi-it-11568-961651.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
390.75 kB
Formato
Adobe PDF
|
390.75 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.