We describe Batyrev’s construction of the mirror to a family of Calabi–Yau hypersurfaces in a Fano toric variety, based on polar duality for lattice polytopes. We revisit the example of the quintic threefold in this language, and briefly mention connections with later developments, such as the Batyrev–Borisov construction for complete intersections in Fano toric varieties, and the Gross–Siebert program.

Batyrev mirror symmetry

Talpo, Mattia
2018-01-01

Abstract

We describe Batyrev’s construction of the mirror to a family of Calabi–Yau hypersurfaces in a Fano toric variety, based on polar duality for lattice polytopes. We revisit the example of the quintic threefold in this language, and briefly mention connections with later developments, such as the Batyrev–Borisov construction for complete intersections in Fano toric varieties, and the Gross–Siebert program.
2018
9783319916255
File in questo prodotto:
File Dimensione Formato  
Superschool_revised.pdf

Open Access dal 01/01/2020

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 234.79 kB
Formato Adobe PDF
234.79 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/962424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact