The Maximal Discrepancy and the Rademacher Complexity are powerful statistical tools that can be exploited to obtain reliable, albeit not tight, upper bounds of the generalization error of a classifier. We study the different behavior of the two methods when applied to linear classifiers and suggest a practical procedure to tighten the bounds. The resulting generalization estimation can be succesfully used for classifier model selection.

Maximal Discrepancy vs. Rademacher Complexity for Error Estimation

L. Oneto;
2011-01-01

Abstract

The Maximal Discrepancy and the Rademacher Complexity are powerful statistical tools that can be exploited to obtain reliable, albeit not tight, upper bounds of the generalization error of a classifier. We study the different behavior of the two methods when applied to linear classifiers and suggest a practical procedure to tighten the bounds. The resulting generalization estimation can be succesfully used for classifier model selection.
2011
9782874190445
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/962591
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? ND
social impact