Graph kernels are widely adopted in real-world applications that involve learning on graph data. Different graph kernels have been proposed in literature, but no theoretical comparison among them is present. In this paper we provide a formal definition for the expressiveness of a graph kernel by means of the Rademacher Complexity, and analyze the differences among some state-of-the-art graph kernels. Results on real world datasets confirm some known properties of graph kernels, showing that the Rademacher Complexity is indeed a suitable measure for this analysis.

Measuring the expressivity of graph kernels through the rademacher complexity

Oneto Luca;
2016-01-01

Abstract

Graph kernels are widely adopted in real-world applications that involve learning on graph data. Different graph kernels have been proposed in literature, but no theoretical comparison among them is present. In this paper we provide a formal definition for the expressiveness of a graph kernel by means of the Rademacher Complexity, and analyze the differences among some state-of-the-art graph kernels. Results on real world datasets confirm some known properties of graph kernels, showing that the Rademacher Complexity is indeed a suitable measure for this analysis.
2016
9782875870278
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/962705
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact