The conceptual separation between computation and coordination in distributed computing systems motivates the use of peculiar entities commonly called connectors, whose task is managing the interaction among distributed components. Different kinds of connectors exist in the literature, at different levels of abstraction. We focus on a basic algebra of connectors which is expressive enough to model, e.g., all the architectural connectors of CommUnity. We first define the operational, observational and denotational semantics of connectors, then we show that the observational and denotational semantics coincide and finally we give a complete normal-form axiomatization.
Complete Axioms for Stateless Connectors
BRUNI, ROBERTO;MONTANARI, UGO GIOVANNI ERASMO
2005-01-01
Abstract
The conceptual separation between computation and coordination in distributed computing systems motivates the use of peculiar entities commonly called connectors, whose task is managing the interaction among distributed components. Different kinds of connectors exist in the literature, at different levels of abstraction. We focus on a basic algebra of connectors which is expressive enough to model, e.g., all the architectural connectors of CommUnity. We first define the operational, observational and denotational semantics of connectors, then we show that the observational and denotational semantics coincide and finally we give a complete normal-form axiomatization.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.