In this work a novel target detector is proposed that is nonparametric in terms of conditional probability density function (pdf) estimation and parametric with respect to the target strength of the additive model it relies upon. The variable bandwidth kernel density estimator is employed to estimate the conditional pdfs, whereas the target strength is estimated via the Maximum Likelihood approach. Experimental results over real hyperspectral data show that the detector succeeds in detecting target objects embedded in a complex background and in providing reasonable estimates for the target strengths.

Hybrid Parametric - Nonparametric Target Detector for Hyperspectral Images

Diani, Marco
;
Corsini, Giovanni
2018-01-01

Abstract

In this work a novel target detector is proposed that is nonparametric in terms of conditional probability density function (pdf) estimation and parametric with respect to the target strength of the additive model it relies upon. The variable bandwidth kernel density estimator is employed to estimate the conditional pdfs, whereas the target strength is estimated via the Maximum Likelihood approach. Experimental results over real hyperspectral data show that the detector succeeds in detecting target objects embedded in a complex background and in providing reasonable estimates for the target strengths.
2018
978-1-5386-7150-4
File in questo prodotto:
File Dimensione Formato  
08519143.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 711.95 kB
Formato Adobe PDF
711.95 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/982755
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact