Nowadays, the coupled codes technique, which consists in incorporating three-dimensional (3D) neutron modeling of the reactor core into system codes, is extensively used for carrying out best estimate (BE) simulation of complex transient in nuclear power plants (NPP). This technique is particularly suitable for transients that involve core spatial asymmetric phenomena and strong feedback effects between core neutronics and reactor loop thermal-hydraulics. Such complex interactions are encountered under normal and abnormal operating conditions of a boiling water reactors (BWR). In such reactors Oscillations may take place owing to the dynamic behavior of the liquid- steam mixture used for removing the thermal power. Therefore, it is necessary to be able to detect in a reliable way these oscillations. The purpose of this work is to characterize one aspect of these unstable behaviors using the coupled codes technique. The evaluation is per- formed against Peach Bottom-2 low-flow stability tests number 3 using the coupled RELAP5/PARCS code. In this transient dynamically complex neutron kinetics coupling with thermal-hydraulics events take place in response to a core pressure perturbation. The calculated coupled code results are herein assessed and compared against the available experimental data.

Analysis of the Peach Bottom flow stability test number 3 using the coupled RELAP5/PARCS code

D'AURIA, FRANCESCO SAVERIO
2006-01-01

Abstract

Nowadays, the coupled codes technique, which consists in incorporating three-dimensional (3D) neutron modeling of the reactor core into system codes, is extensively used for carrying out best estimate (BE) simulation of complex transient in nuclear power plants (NPP). This technique is particularly suitable for transients that involve core spatial asymmetric phenomena and strong feedback effects between core neutronics and reactor loop thermal-hydraulics. Such complex interactions are encountered under normal and abnormal operating conditions of a boiling water reactors (BWR). In such reactors Oscillations may take place owing to the dynamic behavior of the liquid- steam mixture used for removing the thermal power. Therefore, it is necessary to be able to detect in a reliable way these oscillations. The purpose of this work is to characterize one aspect of these unstable behaviors using the coupled codes technique. The evaluation is per- formed against Peach Bottom-2 low-flow stability tests number 3 using the coupled RELAP5/PARCS code. In this transient dynamically complex neutron kinetics coupling with thermal-hydraulics events take place in response to a core pressure perturbation. The calculated coupled code results are herein assessed and compared against the available experimental data.
2006
BOUSBIA SALAH, A.; D'Auria, FRANCESCO SAVERIO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/100204
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact