A second order sufficient optimality criterion is presented for a multiobjective problem subject to a constraint given just as a set. To this aim, we first refine known necessary conditions in such a way that the sufficient ones differ by the replacement of inequalities by strict inequalities. Furthermore, we show that no relationship holds between this criterion and a sufficient multipliers rule, when the constraint is described by inequalities and equalities. Finally, improvements of this criterion for the unconstrained case are presented, stressing the differences with single-objective optimization
On Sufficient Second Order Optimality Conditions in Multiobjective Optimization
BIGI, GIANCARLO
2006-01-01
Abstract
A second order sufficient optimality criterion is presented for a multiobjective problem subject to a constraint given just as a set. To this aim, we first refine known necessary conditions in such a way that the sufficient ones differ by the replacement of inequalities by strict inequalities. Furthermore, we show that no relationship holds between this criterion and a sufficient multipliers rule, when the constraint is described by inequalities and equalities. Finally, improvements of this criterion for the unconstrained case are presented, stressing the differences with single-objective optimizationFile in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


