The first example of the effect of an electric double layer on the reduction of electrochemically generated radical species is reported. The anion radical of methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate (pesticide bifenox) is electrochemically reduced in acetonitrile to a phenylhydroxylamine derivative in a process involving three electrons. This heterogeneous reaction is strongly influenced by the concentration and nature of the cation of the indifferent electrolyte. Depending on the type of tetraalkylammonium cation, the redox potential changes by 0.45 V. The kinetic parameters were obtained for five tetraalkylammonium hexafluorophosphate salts. The Frumkin correction, which assumes that the outer Helmholtz plane coincides with the reaction site, was applied to kinetic data of the radical anion reduction. The correction of the apparent rate accounted for the observed effect only in the case of tetramethylammonium salt. The presence of higher tetraalkylammonium homologues causes deviations from the predicted dependence of the electron-transfer rate on the æ2 potential of the outer Helmholtz plane. Hence, the nature of the cation of the electrolyte exerts a further effect extending beyond the electrostatic repulsion only. The corrected rate of electron transfer decreases exponentially with increasing size of the alkyl chain of the indifferent electrolyte cation in the order methyl > ethyl > propyl > butyl > hexyl. The rate decay is characterized by an exponent â ) 0.83. This confirms that the reaction plane for the reduction of the bifenox radical anion is different for each electrolyte. Due to this fact the Frumkin correction cannot fully account for the observed dependence of the heterogeneous rate on the solution composition. The observed effect is not specific to the bifenox radical. A similar influence of the concentration and nature of the cation of the indifferent electrolyte was observed for other nitro compounds, namely, nitrobenzene, nitrobenzoate, and nitrofen.

Double-layer effects and distance dependence of electron transfer in reduction of nitro aromatic radical anions

GIANNARELLI, STEFANIA
2006

Abstract

The first example of the effect of an electric double layer on the reduction of electrochemically generated radical species is reported. The anion radical of methyl 5-(2,4-dichlorophenoxy)-2-nitrobenzoate (pesticide bifenox) is electrochemically reduced in acetonitrile to a phenylhydroxylamine derivative in a process involving three electrons. This heterogeneous reaction is strongly influenced by the concentration and nature of the cation of the indifferent electrolyte. Depending on the type of tetraalkylammonium cation, the redox potential changes by 0.45 V. The kinetic parameters were obtained for five tetraalkylammonium hexafluorophosphate salts. The Frumkin correction, which assumes that the outer Helmholtz plane coincides with the reaction site, was applied to kinetic data of the radical anion reduction. The correction of the apparent rate accounted for the observed effect only in the case of tetramethylammonium salt. The presence of higher tetraalkylammonium homologues causes deviations from the predicted dependence of the electron-transfer rate on the æ2 potential of the outer Helmholtz plane. Hence, the nature of the cation of the electrolyte exerts a further effect extending beyond the electrostatic repulsion only. The corrected rate of electron transfer decreases exponentially with increasing size of the alkyl chain of the indifferent electrolyte cation in the order methyl > ethyl > propyl > butyl > hexyl. The rate decay is characterized by an exponent â ) 0.83. This confirms that the reaction plane for the reduction of the bifenox radical anion is different for each electrolyte. Due to this fact the Frumkin correction cannot fully account for the observed dependence of the heterogeneous rate on the solution composition. The observed effect is not specific to the bifenox radical. A similar influence of the concentration and nature of the cation of the indifferent electrolyte was observed for other nitro compounds, namely, nitrobenzene, nitrobenzoate, and nitrofen.
Morkovska, P; Hromadova, M; Pospisil, L; Giannarelli, Stefania
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11568/100307
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact