Cadmium (Cd) induces functional and morphological changes in kidney. Therefore, the effects of a natural nutraceutical antioxidant, myo-inositol (MI), were evaluated in mice kidneys after Cd challenge. Twenty-eight C57 BL/6 J mice were divided into these groups: 0.9% NaCl; MI (360 mg/kg/day); CdCl2 (2 mg/kg/day) plus vehicle; CdCl2 (2 mg/kg/day) plus MI (360 mg/kg/day). After 14 days, kidneys were processed for structural, biochemical and morphometric evaluation. Treatment with CdCl2 increased urea nitrogen and creatinine in serum and augmented tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression. Furthermore, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecule-1 (KIM-1) and myo-inositol oxygenase (MIOX) immunoreactivity, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells number were significantly higher than control and MI groups. Glutathione (GSH) content and glutathione peroxidase (GPx) activity were reduced and structural changes were evident. The treatment with MI significantly lowered urea nitrogen and creatinine levels, TNF-α and iNOS expression, MCP-1, KIM-1 and MIOX immunoreactivity and TUNEL positive cells number, increased GSH content and GPx activity and preserved kidney morphology. A protection of MI against Cd-induced damages in mice kidney was demonstrated, suggesting a strong antioxidant role of this nutraceutical against environmental Cd harmful effects on kidney lesions.

Myo-inositol in the protection from cadmium-induced toxicity in mice kidney: An emerging nutraceutical challenge

Antonelli A.;Santoro G.;
2019-01-01

Abstract

Cadmium (Cd) induces functional and morphological changes in kidney. Therefore, the effects of a natural nutraceutical antioxidant, myo-inositol (MI), were evaluated in mice kidneys after Cd challenge. Twenty-eight C57 BL/6 J mice were divided into these groups: 0.9% NaCl; MI (360 mg/kg/day); CdCl2 (2 mg/kg/day) plus vehicle; CdCl2 (2 mg/kg/day) plus MI (360 mg/kg/day). After 14 days, kidneys were processed for structural, biochemical and morphometric evaluation. Treatment with CdCl2 increased urea nitrogen and creatinine in serum and augmented tumor necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS) expression. Furthermore, monocyte chemoattractant protein-1 (MCP-1), kidney injury molecule-1 (KIM-1) and myo-inositol oxygenase (MIOX) immunoreactivity, and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells number were significantly higher than control and MI groups. Glutathione (GSH) content and glutathione peroxidase (GPx) activity were reduced and structural changes were evident. The treatment with MI significantly lowered urea nitrogen and creatinine levels, TNF-α and iNOS expression, MCP-1, KIM-1 and MIOX immunoreactivity and TUNEL positive cells number, increased GSH content and GPx activity and preserved kidney morphology. A protection of MI against Cd-induced damages in mice kidney was demonstrated, suggesting a strong antioxidant role of this nutraceutical against environmental Cd harmful effects on kidney lesions.
2019
Pallio, G.; Micali, A.; Benvenga, S.; Antonelli, A.; Marini, H. R.; Puzzolo, D.; Macaione, V.; Trichilo, V.; Santoro, G.; Irrera, N.; Squadrito, F.; A...espandi
File in questo prodotto:
File Dimensione Formato  
Food and Chemical Toxicology 2019.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.57 MB
Formato Adobe PDF
3.57 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1003521
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 50
  • ???jsp.display-item.citation.isi??? 45
social impact