We introduce a method to speed up adiabatic protocols for creating entanglement between two qubits dispersively coupled to a transmission line, while keeping fidelities high and maintaining robustness to control errors. The method takes genuinely adiabatic sweeps, ranging from a simple Landau-Zener drive to boundary cancellation methods and local adiabatic drivings, and adds fast oscillations to speed up the protocol while canceling unwanted transitions. We compare our protocol with existing adiabatic methods in a state-of-the-art parameter range and show substantial gains. Numerical simulations emphasize that this strategy is efficient also beyond the rotating-wave approximation and that the method is robust against random static biases in the control parameters and with respect to damping and decoherence effects.
Accelerating adiabatic protocols for entangling two qubits in circuit QED
Mannella R.;
2019-01-01
Abstract
We introduce a method to speed up adiabatic protocols for creating entanglement between two qubits dispersively coupled to a transmission line, while keeping fidelities high and maintaining robustness to control errors. The method takes genuinely adiabatic sweeps, ranging from a simple Landau-Zener drive to boundary cancellation methods and local adiabatic drivings, and adds fast oscillations to speed up the protocol while canceling unwanted transitions. We compare our protocol with existing adiabatic methods in a state-of-the-art parameter range and show substantial gains. Numerical simulations emphasize that this strategy is efficient also beyond the rotating-wave approximation and that the method is robust against random static biases in the control parameters and with respect to damping and decoherence effects.File | Dimensione | Formato | |
---|---|---|---|
1901.07344.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
1 MB
Formato
Adobe PDF
|
1 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.